Soda Ash Light

CHEMICAL NAME / FORMULA: Sodium Carbonate - Na$_2$CO$_3$

FORMATION: Crystallised Solid

<table>
<thead>
<tr>
<th>PROPERTIES:</th>
<th>SPECIFICATIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance: Hygroscopic white Powder</td>
<td>Specific Gravity (0°C): 2.532 (water = 1)</td>
</tr>
<tr>
<td>Odour: Odourless</td>
<td>Boiling Pt / Range: Not available</td>
</tr>
<tr>
<td>Flammability: Non Flammable</td>
<td>Flash Point: Non Flammable</td>
</tr>
<tr>
<td>Explosive: Not available</td>
<td>Corrosive: Non Corrosive in Presence of Glass</td>
</tr>
<tr>
<td>Chemical Stability: Stable</td>
<td>Incompatibility: Yes</td>
</tr>
</tbody>
</table>

INSTALLED CAPACITY
96000 MTS per annum

INPUT
Salt and lime stone

OUTPUT
Soda Ash

PACKAGING AND HANDLING
Soda Ash is packed in 50kg HDPE bags. Avoid handling causing generation of dust. Wear full protective clothing for prolonged exposure and/or high concentrations. Provide good ventilation at work place.

TRANSPORTATION CLASSIFICATION

MATERIAL SAFETY DATA
Given Overleaf

USAGES
Soda Ash Light is mainly used for manufacturing of Detergent powder & Cake, Sodium silicate, in Oil well drilling, hygiene / cleaning products, Sodium Chromate, Sodium Bichromate and Sodium Salts. Soda Ash is also used for effluent treatment, water treatment, in pulp and paper manufacture and in dyes. Soda Ash is also used as a relatively strong base in various settings. For example, sodium carbonate is used as a pH regulator to maintain stable alkaline conditions necessary for the action of the majority of developing agents. It is a common additive in swimming pools used to neutralize the acidic effects of chlorine and raise pH.
NAME OF THE PRODUCT
Soda Ash

COMPOSITION / COMPONENTS

HAZARDS IDENTIFICATION
May cause Eye, Skin and Respiratory Track irritation. Avoid contact with eyes, skin and clothing. Avoid breathing airborne product. Use with adequate ventilation. Wash thoroughly after handling. Do not take internally.

FIRST AID MEASURES

- **Inhalation**: Move the exposed person to fresh air at once. Perform artificial respiration if breathing has stopped. Get medical attention.
- **Ingestion**: Drink a couple of glasses water or milk. Do not give victim anything to drink if he is unconscious. Get medical attention.
- **Skin**: Wash thoroughly with soap and water. Remove contaminated clothing. Get medical attention if any discomfort continues.
- **Eyes**: Promptly wash eyes with lots of water while lifting the eye lids. Continue to rinse for at least 15 minutes. Get medical attention if any discomfort continues.

MEASURES IN CASE OF UNINTENTIONAL RELEASE
Avoid inhalation & contact.

MEASURES FOR FIRE FIGHTING
Non Flammable.

HANDLING AND STORAGE

- Avoid handling causing generation of dust. Wear Full protecting clothing for prolonged exposrer and/or high concentrations.
- Provide good ventilation at work place. Store at moderate temperature in dry, well ventilated area. Keep in original bag.

EXPOSURE LIMIT AND STAFF PROTECTION EQUIPMENT

- Exposure Limit not available.
- Splash goggles, full suit, dust respirator, boots, gloves, self breathing apparatus should be used to avoid inhalation of the product.

PHYSICAL & CHEMICAL PROPERTIES

- **Appearance / Physical state**: Powder, Dust
- **Colour**: White
- **Odor**: Odorless
- **Solubility**: Soluble in hot water, glycerol. Partially soluble in cold water. Insoluble in acetone, alcohol.
- **Melting Point**: 851°C (1563.8°F)
- **Density/specific Gravity**: 2.532 (Water=1)
- **Bulk Density (air=1)**: 48 lb/ft³; 769 kg/m³
- **Vapour Density (air=1)**: N/A
- **Vapour Pressure**: N/A
- **pH Value, 1% Solution**: 11.4 Concentration (%M): 1%
- **Stability**: Normally Stable
STABILITY AND REACTIVITY

The product is stable. Reactive with acids. Slightly reactive to reactive with moisture. Hygroscopic. Combines with water with evolution of heat. Incompatible with phosphorus pentoxide, lithium, fluorine, fluoride, ammonia + silver nitrate, 2, 4, 6-trinitrotoluene, ammonia, acids, sodium sulphide + water, hydrogen peroxide, red hot aluminum metal, sodium sulfide, zinc, calcium hydroxide.

Sodium Carbonate is decomposed by acids with effervescence. Reacts violently with F2, Lithium, and 2,4,6-trinitrotoluene. Sodium begins to decompose at 400°C to evolve CO$_2$.

INFORMATION OF TOXICOLOGY

Routes of Entry: Inhalation, Ingestion

Toxicity to Animals: Acute oral toxicity (LD 50): 4090 mg/kg. (Rat).

Acute toxicity of the dust (LC 50): 1200 mg/m3 2 hours (Mouse)

Chronic Effects on Human: May cause damage to the following organs: upper respiratory track, skin, eyes.

Other Toxic Effect on Humans: Hazardous in case of skin contact (irritant), of ingestion, of inhalation (lung irritant).

INFORMATION ABOUT WASTE DISPOSAL

Waste disposal: Waste must be disposed of in accordance with state environment control regulations.

INFORMATION ABOUT TRANSPORT

Transportable in HDPE bags mounted on road truck.

STATUTORY REGULATORY INFORMATION

OTHER INFORMATION

CAS NO.: 497-19-8